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Application of a Property of the Airy Function to Fiber
Optics
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Abstract—The integral of the square of the Airy function from
one of its zeros to infinity is equal to the square of the first derivative
of the Airy function at the zero considered. Two important applica-
tions of this result to fiber optics are discussed.

The Airy function is involved in many problems of fiber optics.
For example, waves guided along the curved boundary of a homo-
geneous dielectric [1] (whispering gallery modes [2]) or along the
straight boundary of a medium with constant transverse gradient
of refractive index [3], are described by Airy functions. We shall
show that the normalized field at the dielectric boundary is given
by a very simple expression because of a property of the Airy
function that does not seem to be known. Knowledge of the nor-
malized field is essential to evaluate the coupling strength and the
bending loss of a mode.

The Airy function Ai(x) is a solution of the differential equa-
tion [4]

d? Al (2)/dz? = z Al (x). (1)
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Fig. 1. (a) ‘lepresents a cross section of the dielectric rod. The mode
fleld has an oscillatory behavior between the caustic with radius c.
and the rod boundary with radius a. The fleld decays expounentially
in the surrounding medium. (b) The wave can be kept conflned in
the axial (z) direction by a slight reduction of the rod radius, from

r=agtor =0

Let us evalnate the integral
-
I = f Ai? (z) dz. (2)
B
Integrating Ly parts, we have

I =z A2 {x) II = 2j z Al (2)[d Al (z)/dz] d=z. (3)

= z

15 we nen the dilferential equation (1), (3) can be written

] = ivar) ! - ‘3f [d Al () /dz][d* A (z) /dz*] dz
=g AR i) ! — [d Al (z)/dz ]
z =

= -z Al? (2) + (A (2) ] (4)
where
Al (z) = d Al (x)/dx

beeauselim (z -+ o) of z Ai* (z) =0, and lim (x — =) of A’ (z) = 0.
If r = 7. 15 a zero of the Airy function, the simple result

-
f Ai? (z) dx = [AV' (z.) ] (5)
Fa .
is obtamed .

As a first example of application of (5), let us consider whispering
gallery modes guided along the circular boundary of a dielectric
rod, with radins a. The number of plane waves in the dielectric
material is denoted k. The wavenumber of plane waves in the sur-
rounding medium (or cladding) is denoted k,. We assume that the
ratio k/k, is not very different from unity and make the scalar
approximation.

The field of whispering gallery modes has the form

giz) = o Ai[x(—z —a-+e)], z <0 (6)
where ¥, is a constant and
= 2UaLAIL—D (7)

as we can see by taking the asymptotic form of Bessel’s functions.
In /8) and (7), ¢ denntes the caustic radius, a quantity that we
shall define later, and z = r — a [see Fig. 1(a)]. The azimuthal
wavenumber is equal to k at the caustic radius ¢, and therefore,

it is equal to (¢/a)k at the rod radius a. The field outside the rod is
approximately given by an exponential

¥(z) = exp (—sz), >0
§ = (k*/at — k)12, (8)

Continuity of the field and of its first derivative at the rod
boundary r = a {or £ = 0} requires that from (6) and (8)

v"nAi [x(——ﬁ -,-C)] = F
vax Al [x(—a +¢)] = s (9)

The caustic radius ¢ is now defined by (9).

The power of the mode is proportional to the integral of ky®(x)
from 2 = — = to the rod boundary, p is the integral of kuy*(x)
from the rod boundary to z = +=. Using (6), (), (9), and the
result in (4) we obtain

0 @
P=kf u'—azAi’[-c(—:c—a+c)]n.’.x+|’c.f exp (—2sz) dzx
=5 0

= kst/x* + k{a — ¢) + k./2s. (10)

For large values of the rod normalized frequency F = (k? — k)Y
(sometimes denoted V'), and low-order modes, the wave clings
tightly to the boundary (¢ — a << a) and the field at the boundary
is very small ecompared with the field inside the rod in the annular
region ¢ <r < a. Thus, in the limit F — =, the square of the
normalized field J? = y?/P at the rod boundary is obtained by
neglecting the last two terms in (10), using (7) and the approxi-
mation § = (k* — kY% The result is

§t = /P = kst = 2k/(k* — k)a. (11)

It is remarkable that this simple result does not involve the Airy
function or its zeros. The radiation leak of whispering gallery modes
is easily obtsined from this expression in (11) and the general
formulas in [5]. {For a comparison see [67).

Whispering gallery modes can be kept confined in the axial (z)
direction if the rod radius is reduced to a slightly smaller radius b
on both sides of the central region as shown in Fig. 1(b). The
azimuthal wavenumbers of the trapped modes (with mode indices
m, n in the radial and axial directions, respectively) are caleulated
in [7] by two different methods. First, by matching the azimuthal
wavenurmnbers at the junction of the central region, of width 2d and
radius a, and at the outer regions of radii b, and secondly, by a per-
turbation method. The results obtained from these two methods
were thought to agree closely but not exactly. The result in (5)
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of the present short paper shows that the agreement between the
two methods is, in fact, exact. The ratio of the right-hand side to
the left-hand side of (5) was inaceurately given in [7] as 0.981 for
the first zero (fundamental Airy mode) and 0.955 for the second
zero. We now recognize that this ratio is unity for all the zeros.
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